\begin{table*}[htbp] \centering \caption{Three Transfer Operators and Their Characteristics} \begin{tabularx}{\linewidth}{XXX} \toprule Transfer operator & Transfer Factor & Target location \\ \midrule Gene Transfer & Entire gene & Multigene chromosome \\ Insertion sequence elements (IS elements) & Short sequences where the first position is a function or endpoint & Gene head anywhere except the root \\ Root insertion sequence element (RIS element) & Short sequence where the first position is a function & Root of the gene\\ \bottomrule \end{tabularx} \end{table*}
\begin{algorithm}[!tb] \caption{Pseudo-code for GEP-SVM Algorithm} \label{alg1} \begin{algorithmic}[1] \renewcommand{\algorithmicrequire}{ \textbf{Input:}} \REQUIRE\ \\ \begin{tabularx}{\linewidth}{lX} $cases$& The sample data set. \\ $N$& Population size. \\ $h$& gene head length. \\ $e$& gene tail length. \\ $n$& Maximum number of operations of the function. \\ $k$& The number of genes. \\ $MaxGeneration$& Fitness of termination iteration. \\ $P_{mu}$& The mutation probability \\ $P_{tr}$& Probability of string insertion \\ $P_{re}$& Recombination probability \\ $P_{ex}$& Extraction probability \end{tabularx}
\renewcommand{\algorithmicensure}{ \textbf{Output:}} \ENSURE\ \\ \begin{tabularx}{\linewidth}{lX} $Y$& Optimal individual (classifier) \\ \end{tabularx} \STATE Pretreat $cases$; \STATE$S$=InitialPopulation; \STATE Best\_Ind=null; \STATE$m$=MaxGeneration; \STATE repeat \STATE analyze chromosome; \STATE fitness(); \STATE$S$=Selection($S$); \STATE$S$=Mutation($S$) by $P_{mu}$; \STATE$S$=Transpostion($S$) by $P_{tr}$; \STATE$S$=Recombinations($S$) by $P_{re}$; \STATE$S$=Extraction($S$) by $P_{ex}$; \STATE$S$=Invertion($S$) by $P_{in}$; \STATE$S$=Adjustment($S$) by $P_{ad}$; \STATE Retain(Best\_Ind); \STATE$m=m-1$; \STATE until $m=0$; \STATE return(Best\_Ind); \end{algorithmic} \end{algorithm}